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Abstract. The complementary finite-element programming method and algorithm for solving finite deformation 
problems in nonsmooth mechanics are presented. This method provides a dual approach for the numerical solutions 
of the mixed boundary-value problem governed by nonsmooth physical laws. Application to non-smooth plastic 
flow is illustrated. 

1. I n t r o d u c t i o n  

Numerical solution of nonlinear mechanics, especially for geometrical nonlinear problems 
governed by the nonsmooth physical laws, has always presented serious difficulties for applied 
mathematicians and engineers. The objective of this paper is to study the complementary varia- 
tional approach and finite-element method for finite deformation nonsmooth mechanics. Such 
a research is of particular interest, since the finite deformation systems governed by nonsmooth 
physical laws occur in many fields of applications. See, for example, P. D. Panagiotopoulos 
[1], J. E. Taylor [2] for variety of problems arising in Mechanics and Engineering. 

It is known that in the early years of finite-element analysis, there were two basic methods: 
the 'displacement method', which is based on the potential energy principle, and the 'force 
method', which is based on the complementary energy principle. In linear elasticity analysis, 
the construction of the algebraic equations for large-scale structures, via the force method, 
is awkward and inefficient in comparison with the displacement method process. So the vast 
majority of practitioners today regard finite element structural analysis as a method based on 
assumed displacements. In finite deformation nonsmooth mechanics, the situation is different. 
Since the governing equation is nonlinear and the potential energy functional is not sure 
convex, the displacement method sometimes is very difficult, even impossible. However, on 
the opposite side, the dual approach may provide a potentially useful method for solving 
nonsmooth systems. Perhaps this is what is the so-called complementarity. 

Complementary variational principles and methods in solid mechanics have been the 
objects of fruitful scientific preoccupation of many a distinguished mechanician such as 
Reissner [3], Fraeijis de Veubeke [4], Oden and Reddy [5], Pian and Tong [6] and many more. 
During the past 20 years the complementary duality theory for geometrical linear systems, i.e. 
infinitesimal deformation systems, has been extended and generalized in various directions 
to study a wide class of problems arising in optimization and control, mechanics, operations 
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research, fluid dynamics, economics and transportation equilibrium. See, for example, A. M. 
Arthurs [7], I. Ekeland and R. Temam [8], M. J. Sewell [9], etc. 

For geometrical nonlinear systems, i.e. large deformation problems, the duality theory 
has been studied by Gao and Strang [10]. By introducing a so-called complementary gap 
function, the complementary dual variational principles in finite deformation theory has been 
established. Applications to nonsmooth mechanics show that this gap plays a key role in the 
analysis of geometrical nonlinear mechanics (see Gao et al. [11-16]. 

The title of a recent paper by Felippa [ 17] asked the question: "Will the force method come 
back?" Professor Gallagher [18] said: "I prefer to ask, however, can we expect to be able 
to employ, routinely, a method that is 'dual', or opposite-hand, to the displacement/stiffness 
method?" 

Based on the general duality theory established in [10], the purpose of the present paper is 
to offer a complementary variational approach to finite-element analysis of more general prob- 
lems in finite deformation nonsmooth mechanics. Compared with the traditional displacement, 
or Ritz method, this method has the following advantages: 

(1) Provides a dual approach to the primal problem. Generally speaking, the displacement 
method gives the upper bounds for the nonlinear problem, however, the dual method will give 
the lower bound. This is the meaning of the complementarity. This advantage is important for 
problems where lower-bound solutions are desired. For instance, in plastic limit analysis, the 
engineer wants to know the lower-bound of the safety loading factor for structural design. So 
the complementary finite-element method provides a direct way to solve these very important 
problems. 

(2) Reduces the nonconvex primal problem to a convex dual problem. In nonsmooth 
systems, the total potential energy functional could be nonconvex. But by using the Legendre- 
Fenchel transformation, the conjugate functional is always convex. So we can use the convex 
programming method to solve the nonsmooth system. 

(3) Reduces the degree-of-freedom in nonlinear programming. For most physical nonlinear 
problems, say the plastic plane flow, suppose that the degrees-of-freedom for the discrete 
primal problem is 2N, for dual problem it is 3N, then by the method we proposed, we have 
only N degrees-of-freedom. This advantage is important for large-scale nonlinear system 
computing. 

(4) Reduces the weak nonlinear problem to a coupled quadratic problem. In physical 
linear systems (for example, the large displacement but small strain deformation), the total 
potential is a quadratic function of the strain tensor. But the primal variational problem is still 
a nonlinear problem due to the geometrical nonlinearity. In the dual problem we use stress, 
the dual variable of strain as the variational argument and the total complementary energy 
is quadratic in both stress and displacement, (see Gao and Cheung [14], Yau and Gao [15]). 
Then, by the dual approach, we can suggest a linear iteration algorithm for solving a nonlinear 
boundary value problem. 

(5) Reduces the order of differentiation. In nonlinear structural analysis, such as nonlinear 
elastic plates, shells, etc., the unknown functions in the primal problem should be at least 
twice differentiable. By using the traditional Ritz finite-element method, we need at least 
second-order interpolation. But in the dual problem, the trivial function needs to be in C 1 or 
C O only. So we can use the linear or constant interpolation in finite-element approach. 

It is because of these advantages that the complementary finite-element method may 
provide an effective approach for numerical solutions of nonlinear, nonsmooth systems. 
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2. General problems and complementary variational approach 

In order to describe the finite deformation nonsmooth mechanics, the operator notations and 
the theory of convex analysis have to be used in this paper; such notations and theory have 
been extensively used in [8, 10]. Let us consider the numerical method for the most general 
system of the nonsmooth variational problem: 

PROBLEM 1. Let H, E be the generalized displacement space and strain space, respectively, 
A : H -+ E thefinite deformation operator. Suppose that the totalpotential J(v, Av) : H -+ R 
is a lower semi-continuous functional. Find u E H such that 

J(u, Au) = inf J(v, Av). (1) 
vEL/ 

In many cases, the nonsmooth functional J can be written as 

J(v, e) = W(e) + F(v) ,  

where W : H --+ R and F : H -+ R are nonsmooth functionals. For a mathematical-physics 
system, the function W denotes the internal energy of the system. Its subgradient OW is a 
convex subset of the general stress space C*, the dual space of E: 

OW(e) : = { ° e E * l W ( e  ) - w ( e ) / > ( a , e - e ) ,  W • E } .  

If W is a smooth function, OW(e) has only one element, i.e. a = OW(e) = OW/Oe. The 
physical meaning of this subdifferential constitutive relation is shown in a later section of this 
paper. Meanwhile, the function F denotes the external energy of the system. Its subgradient 
OF controls the physical relation between the configuration variable space H and the source 
variable space U*. 

If A : H -+ E is a linear map, then we call the system a geometrical linear system. 
Otherwise, the system is geometrical nonlinear. 

For a geometrical linear system, the Euler-Lagrangian for problem 1 is the following 
subdifferential inclusion 

0 • A*OW(Au) + OF(u). (2) 

Here A* : E* -+ H* is the adjoint operator of A defined by the following Gauss-Green 
theorem: 

o )  = 

By introducing a pair of intermediate physical variables e • C and its dual a • C*, this 
subdifferential inclusion can be split into three equations: 

(1) Geometric Eqn. e = Au, (3) 

(2) PhysicalEqns. a • OW(e) and - t • OF(u), (4) 

(3) Equilibrium Eqn. A*a = t. (5) 

The physical equation a • OW(e) controls the internal property of the system, which is 
usually called the constitutive equation. However, - t  • OF(u) controls the external property 
of the system and gives the boundary conditions. We can see a nice symmetry in geometrical 
linear systems. 
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However, for geometrical nonlinear system, where A : /4 --+ £ is nonlinear, such a 
symmetry is broken. The geometrical and physical equations in this system are the same as 
(3) and (4), respectively, but the equilibrium equation should be (see [10]): 

A~a = t. (6) 

Here A~ is the adjoint operator of At, the Gateaux-derivative of A, which depends on the 
variable u. So the Euler-Lagrange inclusion can be given by 

0 E A;OW(Au) + OF(u). (7) 

This general subdifferential equation governs many finite-deformation nonsmooth systems 
(see [11-16]). 

Example: Let us consider the mixed boundary-value problem for a 3-dimensional nonlinear 
elastic system. The domain f~ E R 3 is an open, connected, bounded subset o f R  3 with piecewise 
Lipschitz boundary F = (gf~ = Fu U Ft. On the part Fu, the boundary displacement is given: 
u = ~2, on the remaining part Ft the surface traction f = f(x) is prescribed. In the domain, 
the Green strain tensor e is defined by the quadratic differential operator A: 

c = Au = l [ v u  + (Vu) t + (Vu)t(Vu)]. (8) 

The directional derivative of e at u in the direction v is given by 

5e(u; v) = At(u)v = 2[Vv + (Vv) t + (Vu)t(Vv) + (Vv)t(Vu)] .  (9) 

Here the tangent mapping At (u) is the G,~teaux derivative of e(u) = A (u)u. Its complementary 
mapping A,~ = A - At is given by 

An(u)v = - ¼ [ ( w ) t ( v v )  + ( W ) t ( W ) ] ,  (10) 

which plays a key role in finite deformation theory. By the Gauss-Green theorem, we have 
the virtual work principle: 

(a, At(u)v) = (A~(u)a,v) Vv E U, (11) 

where the adjoint operator A~ of At is defined by 

- V . [ ( I + V u ) a ]  inf~ 
A~(u)a = (12) 

n .  ( I  + V u ) a  on F. 

n is the unit vector normal to the boundary. The potential energy functions W and F in this 
system can be written as 

f f. i fw  E (13) W(e) 
[ +co  otherwise, 

otherwiseif =  
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Where w(e) is the stored energy function. The subdifferentiation of W gives the nonlinear 
elastic constitutive relation: or E OW(e). For small strain deformation, w(e) could be a 
quadratic function of the strain tensor: w(e) = letCe. In this case, this subdifferential inclusion 
degenerates to the linear elastic Hooke's law: a = Ce. Meanwhile, the subdifferential of F 
gives the boundary condition: 

- b ( i n l 2 ) , - f ( o n F t  i fu  = 
- t  E OF(u) = 0 otherwise. 

So, in this example, the abstract governing equation (7) can be written as 

- V - [ ( I  + Vu)a] = bin fl 

n - [ ( I  + Vu)a] = f on F. 

The traditional and the most commonly used finite-element method for solving nonlinear 
boundary-value problems is the displacement method, which is based on the primal varia- 
tional problem (1). In this research, we study the complementary finite-element approach for 
nonsmooth systems, which is based on the dual variational problem. 

For geometrical linear nonsmooth systems, the complementary energy d*, i.e. the conjugate 
functional of J(u, Au) = W(Au) + F(u) can be simply given by the Legendre-Fenchel 
transformation: 

J * ( - A * a ,  a)  = - sup s u p { ( - A * a ,  u)  + (a,  e) - J(u, e)} 
= - W * ( a )  - F*( -A*a) .  (15) 

The complementary variational problem dual to the primal variational problem (1) then takes 
the following form: 

(P*) :  sup J * ( - A * a , a ) .  (16) 
o'Er'* 

Since the conjugate functional J* is concave and upper semi-continuous, if the general stress 
space g* is a bounded, non-empty closed convex subset of a reflexive Banach space, the dual 
problem has at least one solution. If the primal functional J(u,p) • b / x  g --~ R is convex, 
then the complementary variational principle is equivalent to the primal variational problem 
(1) and 

inf P ( u ) =  supP*(a) .  

In finite deformation systems, A :/4 --+ g is a quadratic nonlinear operator. The duality 
theory is established in [10]. By introducing the so-called complementary gap function defined 
by 

G(a, u) = (a, -A,~u), (17) 

where An is the complementary operator ofA : An = A -  At, we found that the dual functional 
of J(u, Au) should be 

J*(-A* a, a) = - W * ( a )  - F*( -A~a)  - G(a, u). (18) 
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In the case of 3-dimensional nonlinear elastic systems, if the W and F are given by (13) and 
(14), respectively, their conjugate functions should be: 

W*(a) = sup{(a, E ) -  W(e)} = {/w*(a)dO+oo otherwise,if w*(a)E £'(f~), (19) 

~ n . ( I + V u ) a f i d F  i f A ~ a =  
F*(-A~a)  (20) J l  

+cx) otherwise. 

For the finite deformation operator A defined by eqn. (8), the complementary gap function 
should be 

G(a, u) = (a, - A n  (u)u) = /~ 2 tr[(Vu)t a(Vu)] da. (21) 

We proved that the stationary condition of J* gives the same Euler-Lagrange inclusion as J. 
Then the dual approach of the primal problem can be proposed by 

PROBLEM 2. Find a, u such that 

(P*) :  g*(-A*(u)a,a)  -- sup J*(--A*(v)T,'r) (22) 
(r,v)e£* ×U 

THEOREM 1 (Gao and Strang [10]). Suppose that (u, a) is a critical point of the dual func- 
tional g*, i.e. 5 J* (-A* (u)a, a) = O. If  the complementary gap function G(a, v) >>. 0 Vv E H, 
then the dual variational problem has at least one solution (a, u) and 

inf J(v, Av) = sup J* (-A* (v)T, "c). (23) 

If  the gap function is strictly positive, the dual problem has a unique solution. 

This theorem shows that the complementary gap function provides a global extremum 
criterion for geometrical nonlinear variational problems. Based on this general theory, a series 
of complementary variational principles for finite deformation nonsmooth mechanics have 
been established (see [ 11-16]). Theoretical analysis shows that for finite-deformation systems 
governed by the linear physical laws (i.e. large displacements and small-strain systems), such 
as thin-walled elastic structures, the primal problem is a non-linear variational problem. But 
the dual problem is a quadratic optimization problem. Based on this complementary variational 
theory, we can suggest an effective algorithm for solving the geometrical nonlinear mixed 
boundary-value problems. 

3. Finite element approach and algorithm 

In this section, we present the finite-element approach for the dual variational problem 

sup {J*(-A*(v)T,~-) = --W*(T) -- F*(--A~-) - G(%v)}, 
(r,v)EC* ×U 

Here we assume that W* is strictly convex. For mixed boundary-value problems in finite- 
deformation theory, the functional F* (% v) is given in (20). If we let 

P*(a, v) = - W * ( a )  + (A~a, fi) - G(a, v), 
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then the dual problem (P*) can be written as 

sup{P* (T, V)[A~' (V)T = t-}. (24) 

This is an infinite dimensional nonsmooth optimization with equality constraint. 
Suppose the domain [2 can be discretized by finite elements such that [2 = Uh[2 h. In each 

element [2h, the equilibrium constraint in the nonsmooth optimization problem (24) can be 
relaxed by the following weak form: 

fflh[(Atv)T--vb] d[2h-- forth vA~TdO[2h= fr fvdFh VvEH, (25) 

in which 012 h is the boundary of the element [2h n o t  belonging to 0[2. By introducing the 
suitable independent interpolation for T and v in each element: 

-oh(x) = Fer(x)q h, vh(x) = Fve(X)p h Vx E [2h, (25) 

where Fer(x) and Fe(x) are interpolation matrices expressing local values of T h and v h in 
terms of the element parameters qh and ph, respectively, the complementary finite-element 
formulation for the dual problem (P*) can be given as: 

maxqeR,~ maxpeR m P* (q, p) 
(P~):  (27) 

s . t .  B ( p ) q  - Q = 0 ,  

where B(p) is a m × n equilibrium matrix, which is given by 

~ { f~h (At(Fv(x)P )Fv(x)) Fr(x) d[2 B ( p )  = e h e t e 

-- £f~h (Fe(x))tn(I + VFe(x)phlFe(x)d(Oah)}'  

and Q E R TM is the nodal external force vector: 

THEOREM 2. For any given finite-element discretization of problem (P*), if the comple- 
mentary gap function 

G(T(q),v(p)) />0 V q E R  n , p E R  m, 

and the following rank condition holds, 

rank B = m < n, 

(28) 

(29) 

then the discrete dual problem ( P~ ) has at least one solution (qh, ph). It has a unique solution 
if the gap function is strictly positive. 

Proof For any given finite-element interpolation (26), if the gap function G(T(q), v(p)) 
is positive, then P* (q, p) : R m --+ R is quadratic and concave for any given q E R n and 

maxP*(q ,p )  V q E R  n 
p E R  m 
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has at least one solution ph. Since the general solution of the equilibrium equation B(ph)q -- 
Q = 0 is a linear manifold, we have 

q --- qo + -A/'(B(ph)), (30) 

where qo is a particular inhomogeneous solution: 

Bqo - Q = 0. (31) 

A/'(B) c R n denotes the null space of linear operator B. If the rank condition (29) is true, then 
the nullity of B satisfies: 

~(B) = dimA/'(B(ph)) = n - m = r > 0, (32) 

and the particular inhomogeneous solution qo can be given by 

qo : B+ (ph)Q, (33) 

where B + is so-called Moore-Penrose inverse of matrix B, which satisfies following condi- 
tions: 

B + B B  + = B + B B + B  = B 

( B + B ) t  = B + B ,  ( B B + ) t  = B B + .  (34) 

Since the rank of  B is equal to the number of  its rows, B + can be constructed as 

B + = B t ( B B t )  -1 .  (35) 

For any given qr E R r, the null space .A/'(B) can be constructed by 

A/'(B) = {qn E Rnlqn = Nq r Vqr E R r } ,  (36) 

in which N = P 'D*,  P* is a n by n complementary projector of the linear operator B: 

P* = I -  B + B  = I -  P, (37) 

where P is the project matrix of B, and D* E R n × R r is a matrix such that the row vectors of 
P 'D* is a base of row vectors of P*. By taking the property of B + into account, it is obvious 
that 

BNqr = BP*D*q~ = {B  - BB+B}D*qr - 0 Vqr E R r, 

which means that Nqr E A/'(B). Therefore, the general solution of the equation B(ph)q -- Q = 
0 can be written as 

q = qo + Nqr Vqr E R r. (38) 

Substituting this general solution into the discrete dual problem (P~), we may reduce the 
maximizing of P* for q to 

max P* (q(qr),  ph). (39) 
qr  E R r 

This is a nonsmooth optimization problem with only r = n - rn degrees-of-freedom. Since 
P* : R n -+ R is strictly concave on q for any given p E R m, this problem has only one 
solution qh. If the gap function is strictly positive, P* • R n × R TM --+ R is strictly concave on 
both q E R n and p E R m. If the rank condition (29) is true, the dual problem (P~) possesses 
only one solution (qh ph). Q.E.D. 

Based on this theorem, we can suggest the following algorithm for solving the coupled 
convex algorithm (27): 
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(1) For a given pk E R TM, solve the discrete equilibrium equation 

B(pk)q = Q 

by the method given in the proof of Theorem 2. We have 

q = qo k + N(pk)qr. (40) 

(2) Solve the nonlinear (or nonsmooth) programming problem 

max P*(qo k + Nqr , pk) (41) 
q r E R  r 

for q~. 
(3) Let qk = qo k + N(pk)qrk, solve the problem 

max P* (qk, p) (42) 
p E R  m 

obtaining pk+l. 
(4) If IIB(pk+l)q k - QII ~< w (w > 0 is a previously given constant), stop. Otherwise, let 

k = k + 1, go back to step (1). 
By the theorem proved above, if the gap function G possess a right sign and the rank condition 
(29) is true, then the sequence {pk, qk} will converge to the solution of the primal problem. 

4. Applications 

Consider a rigid perfect-plastic material occupying a volume [2 in three-dimensional Euclidean 
space R 3 with boundary 0f~ = Fu U Ft. Let u denote the velocity of the particle x = {x a } E ~.  
For given external loading system b (in f~), f (on Ft), the governing equations for plastic flow 
are given as follows: 

e = A u  in f ' ,  u = 0 o n F u ,  (43) 

a E OCK(e) or e E OkOg(a) inf , ,  (44) 

h~(u)a  = b in f~ A~(u)cr = f on f t .  (45) 

For small displacement problems, A is a gradient-like operator: A = ½ (V + V t) and its adjoint 
A* = A~' should be the divergence operator 

A * a = [ - V ' a  inf , ,  
( n .  a onF.  

(46) 

For large deformation problems, A is given by (10) (see Gao and Strang [11]). f ig(e)  is the 
support function of the convex set K:  

~K(e) = sup {(a, e)}. (47) 
a E K  

The convex set K is defined as 

K = {or E Lq(f~,R 3 x R3)lf/(a) ~< 0, i = 1 , 2 , . . . , n } ,  (48) 
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2 

f = O ~  ~ 
( y / f = O  

Fig. 1. Nonsmooth  plastic constitutive relation. 

where fi (a) is the so-called plastic yield function, which is a convex function of  stress. For a 

von-Mises material, fi(a) = d ~  _ ab. a ct is the stress deviator, a d = a - tr a. kv K is 

the conjugate function of ffK given by the following Legendre-Fenchel transformation: 

0 i f a E K  
~g(a)  = sup{(e,a)  -- ~K(e)} = +oo i f a  ~ K. (49) 

which is called the indicator function of the convex set K.  This is a nonsmooth system. The 
constitutive relation between the strain and stress tensor 

x--', Ofi(a) 
2..,. #i ~ .  i f f i ( a )  = 0 ,# i />  0, 

6 E 0 ' I ' g (a )  z 
{0} if fi(a) < 0, (50) 

0 if fi((7) > O. 

is a point-to-set mapping, see Fig. 1. At a = al, ¢gkOg(a) has the only one element el = 
#Ofl(a)/Oa, # >1 0 is the plastic-flow factor. But at a = a2, the intersection of f l  with f2, 
OkOg is a convex cone. Any vector in this cone is the possible strain variable associated with 
the given stress field a2. 

Actually, by the definition of the subdifferential OkOg: 

It is obvious that if both T, a • K,  this subdifferential set OkOg is equivalent to 

< e ( a ) , a - ~ )  />0 W , a • K .  

This is the well-known maximum work theorem. 
Let 

W ( e ) = ~ K ( e ) d ~ ,  F ( u ) = (  -/abudf~-fr+cx~, ~tudF (51) 

then the mixed-boundary value problem (43-45) can be written as the following optimization 
problem: 

inf . {W(Au)  + F(u)} .  (52) 
u6H~ (~ ,R  j ) \ 
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This is a nonsmooth variational problem. For plastic limit analysis, we take the linear deforma- 
tion operator A. (The nonlinear plastic limit analysis is studied in [11].) Further, the external 
load is suppose to be proportional to a positive scalar v > 0, i.e. t = (b, f )  = v(b, f )  = yr. 
Over the kinematically admissible space defined by 

bla:=(uE£'(f~)lu=OonF~,,/nfudf~+frFudV=l } 
the collapse load factor vc for limit analysis can be given as 

(P)  :vc = inf W(Au) .  (53) 
uEUa 

The Ritz finite-element method for this primal problem will provide an upper-bound approach 
for the collapse load factor vc. 

The complementary energy in this problem is (see [19]) 

w*(o)  K(o) 

Let Sa be the statically admissible space defined as 

S= :-- {a e 8*lA*a -- v-t-}, 

in which v -  > 0 is the statically admissible load factor determined by a E Sa. Then the dual 
problem for limit analysis is given in [19]: 

( P * ) :  vc = sup {V-(T) -- W*(T)}. (54) 
rESa 

This dual problem will provide the lower bound approach for the collapse load factor vc. If 
the statically admissible stress field T is in the yield set K,  then (54) can be written as 

Vc = s u p ( v - - ( T ) ] A * T  = V--t-, f / ( ' r )  ~< 0}.  

This is the classical lower-bound theorem. 
Assuming suitable independent interpolation roles for both stress and velocity fields in 

each element f~h, we have: 

Th(x) = v - F e ( x ) q  h, vh(x) = Fe(x)p h, (55) 

the discrete form for dual problem (54) may be represented as 

(p•) .  vc h = max(v-,q)eR+×R,~{v- -- W * ( v - ,  q)}, (56) 
s.t. Bq - Q = 0, 

in which 

h 
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fr q)) d[2 h. W*(v- ,q )  = ~ h (59) 
h 

If the yield set K is convex, and the rank condition (29) holds, by the algorithm suggested 
above, this dual problem has a unique solution and, for any given finite element discretization 
[2h of [2, we have a lower-bound approach for the collapse factor 

h uc/>vc h, t,'c= l imv c 
h---r0 

In order to solve the nonsmooth optimization 

max {v- - W*(v- ,  qo + Nqr)}, 
qr  E R r  

an augmented Lagrange method (see [20]) can be used here. According to the property of 
W*, we let 

WPa(v- 'q 'A 'ce )=~-~  h 2  A+ f (a (v -q ) )  ¢(¢h)--A2 d[2 h, (60) 
h 

in which a > 0 is the penalty factor, A ~> 0 is the dual variable of the yield function f (a) ,  ¢ 
is the jump function: 

1 i f ch  > 0, 

¢(¢h) __ 0 i f ch  ~< 0. 

ch  is a domain-dividing function: ch = A + (1/a) f (a)  in [2h (see [20]). It is easy to prove 
that for any given q E R n, and v -  > 0, we have 

W * ( v - , q ) =  max Wpd(v- ,q ,A ,a  ). (61) 
a>0 ,A~>0 

Substituting this into (56) and letting 

h -- * -- Upd(V , q, A, o~) = u-  - W;d(U , q, A, a), 

we may give the penalty-duality finite-element approach for nonsmooth plastic limit analysis 
as follows: 

max max min Uphd(//-, qo + Nqr, A, a). (62) 
v -  > 0  q r E R  r A>/0,cz>0 

In [20], the penalty-duality iterative algorithm for this nonsmooth optimization can be sug- 
gested as follows: 

Given a penalty-duality factor ak > 0, Ak ~> 0, determine vff, qr k by 

(63) 

in [2h, (64) 

max vpha(v - ,  qo + Nqr, Ak, ak). 
v -  ~qr 

Then modify the penalty-duality factor by 

Ak+l = {Ak + ---1 f (a(v~,qk))  } ¢(¢h) 
Olk 
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Fig. 2. Simply support square plate and finite-element meshes. 
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Fig. 3. Convergence tests of simply supported square plate. 

{ ~k if t f(a(v k, qk))l ~< 0lf(a(vk--1, qk-1))l (65) 
ak+] = 7ak otherwise, 

where 0 E [0.1,0.4] and 7 E [0.1,0.25] are control parameters. 
Let us consider the limit analysis for a rigid perfectly plastic plate. The finite-element 

discretization is based on triangular elements with linear variation for the transversal dis- 
placements and constant for the bending moments. For small deformation theory, using the 
Von-Mises yield function: 

f ( m i j )  = ~fm~ + m 2 y -  m x m y  + 3m2y- - rob ,  (66) 

where, with obvious meaning of the symbols, mz, my and mxy are the bending moments and 
mb is the flexural strength of the plate. For the simply-supported circular plate of uniform 
thickness subjected to a uniform distributed load, with only 41 elements meshes, the collapse 
load is given as v h = 6.50mb/a  2. The exact collapse factor is known as ~c = 6.51mb/a2; the 
relative error (u h - Uc)/Vc is only 0.015. 

The analysis of a square plate of uniform thickness is performed by using a different series 
of meshes shown in Fig. 2, with the aim of performing a numerical test of convergence (see 
Fig. 3). 

Table 1 shows a comparison of the numerical results obtained by the proposed method 
with the existing bounds and approximate values of the collapse load. The results show that 
the complementary finite-element method provides a very good lower-bound approach for 
this nonsmooth system. 
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Table 1. Collapse load of simply supported square plate. 

Belytschko-Hodge [21] Ranawerra-Leckie [22] Gao Casciaro-Cascini Christiansen 
u + u -  u + v -  ~'~ [23] and Larsen [24] 

6.635 6.216 6.265 5.97 6.249 6.258 6.255 

5. Concluding  r emarks  

(1) It is known that in the large-scale structural finite-element analysis, nonlinear iteration is 
time-consuming. Assume a given finite-element discretization such that the nodal displace- 
ment vector p E R m, and nodal stress vector q E R n. Then by the traditional displacement 
method, in each iteration, we have to solve the nonlinear problem min P (v (p)) with m degrees 
of freedom. However, by using the algorithm suggested in this paper, we can use the equilib- 
rium constraint Bq = Q in problem (27) to reduce the degrees of freedom in the nonlinear 
programming problem (41) to r = n - m only. Since r is much less than rn, this algorithm 
can save much more computing time than the Ritz method. 

Let us take the plane plastic flow as an example. Suppose the two-dimensional domain is 
divided by finite elements with a total N nodes. At each node, the velocity v e c t o r  ph has two 
degrees-of-freedom, and the nodal stress v e c t o r  qh has 3. So the total degree-of-freedom for 
the Ritz method will be dim p = 2N. But, by the method we proposed, the degree-of-freedom 
for nonlinear programming is only r = dim qr = 3N - 2N = N.  This fact shows that 
this complementary finite-element method can reduce the degrees-of-freedom in large-scalar 
nonlinear programming to a great extent. 

(2) In large displacement but small-strain deformation systems, the complementary ener- 
gy W* is a quadratic function of the generalized stress, and the gap function G(cr, v) is a 
quadratic function of the displacement. In this case, the primal problem is still a weak non- 
linear variational problem due to the finite deformation operator A. But, the dual problem 
sup J * ( - A *  (v)~r, or) is a coupled quadratic variational problem. So this proposed algorithm 
provides a coupled quadratic approach for solving the nonlinear boundary-value problems. 

(3) For nonsmooth systems, the functional W(e) and F(v) could be nonconvex. But by the 
Legendre-Fenchel transformation, the dual functionals W* (~r) and F* (t) are always convex. 
Then we can use the so-called "bundle method" (see, for example, C. Lemarchel, J.J. Strodiot 
and A. Bihain [25], K. Kiwiel [26], J.J. Strodiot and V.H. Nguyen [27]) to solve the nonsmooth 
programming problem. 
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